
NAS System Engineering Manual Chapter 2
Version 3.1 06/06/06

2-1

2 OVERVIEW OF SYSTEM ENGINEERING

This section traces several key developments and lessons learned that led to today’s
championing of System Engineering (SE) as a powerful approach to organizing and conducting
complex programs, such as those in the National Airspace System (NAS). SE continues to
evolve, emphasizing stronger commercial- and team-based engineering organizations as well
as organizations without technical products. Before World War II, architects and civil engineers
were, in effect, system engineers who worked on large, primarily civil, engineering projects—
including the Egyptian pyramids, Roman aqueducts, Hoover Dam, the Golden Gate Bridge, and
the Empire State Building—while other architects worked on trains and large ships. However,
“early” system engineers operated without any theory or science to support SE. Thus, they
lacked defined and consistently applied processes or practices. During World War II, a program
manager and chief engineer might oversee development of an aircraft program, while others
managed key subsystems, such as propulsion, controls, structure, and support systems. This
led to a lack of uniformity throughout the process.

Some additional SE elements, such as operations research and decision analysis, gained
prominence during and after World War II. Today, with more complex requirements and
systems, chief engineers use SE to develop requirements and to integrate the activities of the
program teams.

SE began to evolve as a branch of engineering during the late 1950s. At this time—when both
the race to space and the race to develop missiles equipped with nuclear warheads were
considered absolutely essential for national survival—the military services and their civilian
contractors were under extreme pressure to develop, test, and place in operation nuclear-tipped
missiles and orbiting satellites. In this climate, the services and their contractors sought tools
and techniques to improve system performance (mission success) and program management
(technical performance, delivery schedule, and cost control). Engineering management
evolved, standardizing the use of specifications, interface documents, design reviews, and
formal configuration management. The advent of hybrid and digital computers permitted
extensive simulation and evaluation of systems, subsystems, and components that facilitated
accurate synthesis and tradeoff of system elements.

The lessons learned with development programs led to innovative practices in all phases of
high-technology product development. A driving force for these innovations was attainment of
high system reliability. Some examples of changes introduced during the period are:

• Requirements traceability

• Parts traceability

• Materials and process control

• Change control

• Product accountability

• Formal interface control

2.1 What Is System Engineering?

Beyond the definition used in the Introduction (Chapter 1), SE is an overarching process that
trades off and integrates elements within a system’s design to achieve the best overall product
and/or capability known as a system. Although there are some important aspects of program
management in SE, it is still much more of an engineering discipline than a management

NAS System Engineering Manual Chapter 2
Version 3.1 06/06/06

2-2

discipline. SE requires quantitative and qualitative decision making involving tradeoffs,
optimization, selection, and integration of the results from many engineering disciplines.

SE is iterative—it derives and defines requirements at each level of the system, beginning at the
top (the NAS level) and propagating those requirements through a series of steps that
eventually leads to a physical design at all levels (i.e., from the system to its parts). Iteration
and design refinement lead successively to preliminary design, detail design, and final approved
design. At each successive level, there are supporting lower level design iterations that are
necessary to gain confidence for decisions. During these iterations, many concept alternatives
are postulated, analyzed, and evaluated in trade studies, resulting in a multi-tier set of
requirements. These requirements form the basis for structured verification of performance. SE
closely monitors all development activities and integrates the results to provide the best solution
at all system levels.

2.2 What Is a System?

A system is an integrated set of constituent parts that are combined in an operational or support
environment to accomplish a defined objective. These integrated parts include people,
hardware, software, firmware, information, procedures, facilities, services, and other support
facets. People from different disciplines and product areas have different perspectives on what
makes up a system. For example, software engineers often refer to an integrated set of
computer modules as a system. Electrical engineers might refer to a system as complex
integrated circuits or an integrated set of electrical units. The FAA has an overarching system
of systems called the NAS that includes, but is not limited to, all the airports; aircraft; people;
procedures; airspace; communications, navigation, and surveillance/air traffic management
systems; and facilities.

It is difficult to agree on what comprises a system since it depends entirely on the focus of those
who define the objective of the system. If the objective is to print input data, a printer may be
defined as the system. Expanding the objective to processing input data and displaying the
results yields a computer as the system. If we expand the objective further to include a
capability for computing nationwide or worldwide data and merging data/results into a database,
then a computing network becomes the system, with the computer and printer(s) as subsystems
of the system.

A concept that has received considerable attention in recent years has been that of a system of
systems, which can be described as the composite interaction of independent complex systems.
There are several definitions of System of Systems (SOS) as opposed to the component
systems that comprise an SOS, depending on the domain or application of interest. For
example, ISO 15288 discusses a system in the context of its operational environment and
makes the point that within a system hierarchy, any component can be a system in its own right,
with all the characteristics ascribed to a system.1 The Defense Acquisition University (DAU)
asserts that:

“System of systems engineering deals with planning, analyzing, organizing, and
integrating the capabilities of a mix of existing and new systems into a system of
systems capability greater than the sum of the capabilities of the constituent parts.
It is a top-down, comprehensive, collaborative, multidisciplinary, iterative, and
concurrent technical management process for identifying system of systems
capabilities; allocating such capabilities to a set of interdependent systems; and
coordinating and integrating all the necessary development, production,

1 ISO/IEC 15288:2002(E), page 52.

NAS System Engineering Manual Chapter 2
Version 3.1 06/06/06

2-3

sustainment, and other activities throughout the life cycle of a system of systems.
The overall objective for developing a system of systems is to satisfy capabilities
that can only be met with a mix of multiple, autonomous, and interacting systems.
The mix of constituent systems may include existing, partially developed, and yet-
to-be-designed independent systems.”2

While there is not consensus on a single definition, there appears to be convergence on some
common characteristics or issues that SE must pay particular attention to in this context:

• The issue of scale, often discussed as ”large-scale systems integration”

• The added degree of complexity over that of the component systems

• Interoperability and boundaries across the System of Systems, which drives an
increased focus on the control of interfaces between the component systems

An SOS should be treated and managed as a system in its own right and should therefore be
subject to the same SE processes and best practices applied to individual systems. The NAS
can be characterized as a “system of systems” by any of these measures. The FAA defines the
NAS as the overall environment in which aircraft operate, including aircraft, pilots, tower
controllers, terminal area controllers, en route controllers, oceanic controllers, maintenance
personnel, and airline dispatchers, as well as the associated infrastructure (facilities, computers,
communications equipment, satellites, navigation aids, and radars). For the purposes of this
SEM, the NAS will be treated as a system, recognizing that the SOS characteristics above
require specific treatment, especially at the NAS level.

SE first defines the system at the top level, ensuring focus and optimization at that level. It then
proceeds to increasingly lower levels of detail until the system is completely decomposed to its
basic elements. The following subsection describes the hierarchy.

2.2.1 Hierarchy

A system may include hardware, software, firmware, people, information, techniques, facilities,
services, and other support items. Figure 2.2-1 establishes a common reference for discussing
the hierarchy of a system/subsystem within the NAS. Each system item may have its own
associated hierarchy. For example, the various software programs/components that may reside
in a system have a commonly accepted hierarchy as depicted in Figure 2.2-2. Thus, Figure 2.2-
2 is a subset of Figure 2.2-1 in that a system/subsystem may have multiple Computer Software
Configuration Items (see definitions next page). The depths of this common hierarchy may be
adjusted to fit the complexity of the system. Simple systems may have fewer levels in the
hierarchy than complex systems and vice versa. Because there may be varying hierarchal
models referenced in the realm of SE, it is important for those who define the objective or
function of a given system/subsystem to also lay out the hierarchal levels of the system in order
to define the system’s scope.

Following are definitions for succeeding levels within the system/subsystem hierarchy used in
this SEM:

• System. An integrated set of constituent parts that are combined in an operational or
support environment to accomplish a defined objective. These parts include people,
hardware, software, firmware, information, procedures, facilities, services, and other
support facets.

2 Defense Aquisition Guidebook Web site: akss.dau.mil/DAG/GuideBook/IG_c4.2.6.asp

NAS System Engineering Manual Chapter 2
Version 3.1 06/06/06

2-4

Figure 2.2-1. System Hierarchy

Figure 2.2-2. Common Software Hierarchy

• Subsystem. A system in and of itself (reference the system definition) contained within
a higher level system. The functionality of a subsystem contributes to the overall
functionality of the higher level system. The scope of a subsystem’s functionality is less
than the scope of functionality contained in the higher level system.

• Element. An integrated set of components that comprise a defined part of a subsystem
(e.g., the fuel injection element of the propulsion subsystem).

• Component. Composed of multiple parts; a clearly identified part of the product being
designed or produced.

NAS System Engineering Manual Chapter 2
Version 3.1 06/06/06

2-5

• Part. One, two, or more pieces joined together to make a component; these pieces?
the lowest level of separately identifiable items within a system—are not normally
subject to disassembly without destruction or impairment of designed use.

• Software. A combination of associated computer instructions and computer data
definitions required to enable the computer hardware to perform computational or control
functions.

• Computer Software Configuration Item (CSCI). An aggregation of software that is
designed for configuration management and treated as a single entity in the
Configuration Management process (Section 4.11).

• Computer Software Component (CSC). A functionally or logically distinct part of a
CSCI, typically an aggregate of two or more software units.

• Computer Software Unit. An element specified in the design of a CSC that is
separately testable or able to be compiled.

• Module. A program unit that is discrete and identifiable with respect to compiling,
combining with other units, and loading.

2.3 Why Use System Engineering?

The most important reason to apply SE is that it provides the context, discipline, and tools to
adequately identify, define, and manage all system requirements in a balanced manner. It
provides the disciplines required to produce a complete solution concept and system
architecture. It also provides the discipline and tools to ensure that the resulting system meets
all requirements that are feasible within specified constraints. No other engineering or
management discipline explicitly provides this comprehensive context or results. The need for
effective SE is most apparent with large, complex system developments, such as weapons and
transportation systems. However, SE is also important in developing, producing, deploying, and
supporting much smaller systems, such as cameras and printers. The growing complexity in
development areas has increased the need for effective SE. For example, about 35 years ago
in the semiconductor industry, a single chip was no more complex than a series of a few gates
or, at most, a four-stage register. Today, Intel's Pentium® processor is far more complex, which
immensely expands the application horizon but demands far more sophisticated analysis and
discipline in design.

The movement to concurrent engineering as the technique for performing engineering
development is actually performing good SE. SE provides the technical planning and control
mechanisms to ensure that the activities/results of concurrent engineering meet overall system
requirements.

A driving principle for SE is the teaming that often occurs during development programs. In this
case, teaming is among several entities that may have different tools, analysis capabilities, and
so on. SE principles defined in this manual may provide an improved ability to plan and control
activities that require interaction and interfacing across boundaries. The strongest argument for
using the SE processes is that they increase the likelihood that needs may be fully and
consistently met in the final product.

